
CPS352 Lecture - The Transaction Concept

Last Revised March 24, 2021
Objectives:

1. To introduce the notion of a transaction and the ACID properties of a transaction
2. To introduce the notion of the state of a transaction
3. To introduce the notion of schedules, serializable schedules, and testing for

serializability
4. To introduce the notions of recoverability and cascading rollback
5. To introduce the notion of compromising strict serializability for performance sake

Materials:

1. Projectables of consistent (2) and inconsistent results from the concurrent
execution of two transfer transactions

2. Projectable of transaction state transitions
3. Projectables of SQL code and alternate schedules for concurrent deposit and

withdrawal to same account
4. Projectables of various serializabilty examples numbered 1..8
5. Repeat of non-serial concurrent pair of transfer transactions and serial

equivalent
6. Repeat of unserializable concurrent pair of transfer transactions and its

precedence graph
7. Repeat of serializable concurrent pair of transfer transactions and its precedence graph
8. Example of a schedule with rollback

I. Introduction

A. At the start of the course, we noted that one key responsibility is to preserve
the integrity of the database by dealing with issues that could otherwise lead
to its corruption. In the next few lectures, we want to deal with two of these
in particular:

1

1. CONCURRENCY CONTROL deals with ensuring that the integrity of
the database is preserved when it is being simultaneously accessed by
more than one user (a critical capability for many systems using DBMS's)

2. CRASH CONTROL deals with ensuring that the integrity of the database
is preserved even if a system crash (perhaps arising from factors outside
the control of the DBMS) should occur while changes are being made to
the database.

B. Though these seem like two rather diverse issues, it turns out that a key
concept is at the heart of measures for dealing with both of them - the
concept of a TRANSACTION.

C. A preliminary definition: We say that the database is in a CONSISTENT state
if there are no contradictions between items stored in the database.

1. However, during the course of routine processing, it is sometimes necessary for
the database to momentarily enter an inconsistent state

Example:

In a banking system, a customer requests a transfer of funds from a checking
account to his savings account. Note that this operation results in a change to the
balances in both accounts; however, the SUM of the two balances is not
changed. Thus, the database is consistent if the sum of the two balances is
correct. However, in processing the transfer, it will necessarily be the case that
one of the two new balances is written to disk before the other (they can't both
be written at exactly the same time if they are stored on the same disk and even
if they are on different disks it is unlikely that both would be changed at exactly
the same time.) Thus, during the brief interval between the two write operations
the database on disk is actually in an inconsistent state.

2. The DBMS must take measures to ensure that this momentary
inconsistency does not become permanent.

a) A failure or a crash at this instant could "freeze" that inconsistency.

2

b) If another user were to access the data at this point, that user would see
inconsistent data; and if user were performing an operation that updated the
database, the inconsistent data might be incorporated into that update.

3. In the case of concurrent processing, overlapping of two operations on the
same data could also result in inconsistency.

Example: consider what happens if a customer transfers $100 from their
checking account and an automatic transfer program is run that transfers
10% of their checking balance to savings.

For the purpose of the example, assume that the initial balance in the
checking account is $2000, while the savings balance is $1000. We will
say that the result of the two transfers is consistent if the sum of the two
balances - which is $3000 before - is also $3000 after.

a. First, we consider what would happen if the manual transfer is done
completely first.

Initial checking balance $2000; initial savings balance $1000

Manual Transfer Transaction (T1) Automatic Transfer Transaction (T2)

Reads checking balance ($2000)
Subtracts $100 to give $1900
Writes checking balance ($1900)
Reads savings balance ($1000)
Adds $100 to give $1100
Writes savings balance ($1100)

Reads checking balance ($1900)
Subtracts 10% ($190) to give $1710
Writes checking balance ($1710)
Reads savings balance ($1100)
Adds $190 to give $1290
Writes savings balance ($1290)

Final sum of balances is $1710 + $1290 = $3000 - consistent

PROJECT

3

b. Now consider what would happen if the two operations were overlapped as
follows:

Initial checking balance $2000; initial savings balance $1000

Manual Transfer Transaction (T1) Automatic Transfer Transaction (T2)

Reads checking balance ($2000)
Subtracts $100 to give $1900
Writes checking balance ($1900)

Reads checking balance ($1900)
Subtracts 10% ($190) to give $1710
Writes checking balance ($1710)

Reads savings balance ($1000)
Adds $100 to give $1100
Writes savings balance ($1100)

Reads savings balance ($1100)
Adds $190 to give $1290
Writes savings balance ($1290)

Final sum of balances is $1710 + $1290 = $3000
- same as above, so consistent

PROJECT

4

c. But it is also possible to overlap the transactions in such a way as to produce
an inconsistent result:

Initial checking balance $2000; initial savings balance $1000

Manual Transfer Transaction (T1) Automatic Transfer Transaction (T2)

Reads checking balance ($2000)
Reads checking balance ($2000)

Subtracts $100 to give $1900
Writes checking balance ($1900)

Subtracts 10% ($200) to give $1800
Writes checking balance ($1800)
Reads savings balance ($1000)
Adds $200 to give $1200
Writes savings balance ($1200)

Reads savings balance ($1200)
Adds $100 to give $1300
Writes savings balance ($1300)

Final sum of balances is $1800 + $1300 = $3100 - inconsistent!

4. Actually, it is also possible for a pair of transactions to be executed in two
different ways that are both consistent, yet produce different results.

Example: Suppose the automatic transfer is done completely first. Then
what are the final results?

ASK

Though this is slightly different, is it consistent?

ASK

5. We have seen four different ways of ordering the operations, three of
which produce consistent (though in one case slightly different) results,
and one of which produces inconsistent results. We'll see shortly how we
can look at a sequence of operations and know whether it can be shown to
produce consistent results.

5

II. The Transaction Concept

A. At the heart of strategies for preventing problems like these is that we
conceive of the DBMS's work as basically involving the processing of a
series of TRANSACTIONS.

1. Each transaction begins with the database in a consistent state, and ends
with the database in a consistent state - but may momentarily place the
database into an inconsistent state due to the necessity of performing
updates one after another.

2. We can define a transaction formally as follows: a transaction is an
atomic operation involving a series of processing steps, including:

a) The reading of zero or more items from the database.

b) The writing of one or more items to the database.

(Actually, there is such a thing as a read only transaction that reads
data from the database, but writes nothing; such transactions, however,
do not cause problems of the sort we have discussed, though they do
need to be considered in the context of concurrency.)

Further, if the database is in a consistent state when a transaction is
begun, then it will still be in a consistent state when the processing of
the entire transaction is complete.

c) Of course, a transaction will do computation with the data it accesses
in the database, but from the standpoint of the DBMS the transaction
only interacts with the database via reads and writes (where operations
such as insert or delete can be thought of as a variant of write.)

B. To preserve system consistency, we must guarantee that each transaction
satisfies four requirements. These are called the ACID properties, after the
first letters of their names.

6

1. ATOMICITY: We must guarantee that each transaction is processed
ATOMICALLY - i.e. either none of it is done, or all of it is done. It must
NOT be possible for only part of a transaction to be carried out.

a) This means that if a transaction is aborted for any reason (due to a
logical error in the data or a request by the user, then all effects of the
transaction must be removed from the database and the database must
be restored to the state it was in before the transaction was begun.

b) This also means that if a system crash occurs in the middle of
processing a transaction, then either:

(1)Upon system restart, the system must be restored to its state before
the transaction was started (in which case the transaction has no
effect - but can be restarted from scratch.)

or

(2)Upon system restart, the work that was not done because of the
crash is completed before any new work is begun.

2. CONSISTENCY: If a transaction is executed in isolation (with no other
transactions executing concurrently), and the database is in a consistent
state when the transaction starts, then it will still be in a consistent state
when it is finished.

3. ISOLATION: Even if transactions are executing concurrently, the overall result
is the same as if they executed serially - i.e. as if each transaction executed in
isolation, with one transaction completing before the next begins.

a) This was the problem with our earlier example about depositing
money into an account at the same time interest was being posted to it.
Each transaction was consistent in isolation, but they interacted in
such a way as to produce inconsistency.

b) Note that we consider the isolation property to be satisfied if the result
is equivalent to ANY serial ordering of the transactions being

7

processed - e.g. as we already noted execution of both a deposit and
interest posting would give two different final balances in the account
if the deposit was done before interest was posted or after it was
posted - but either result is acceptable.

4. DURABILITY: Once a transaction is completed, its effects on the database
must persist, even if there is a subsequent system crash. This may mean
restoring some data that was destroyed by a crash upon restart.)

C. In SQL, transactions are can either be defined explicitly by BEGIN TRANSACTION
and END TRANSACTION (within embedded code), or - more typically - implicitly,
by the COMMIT [WORK] and ROLLBACK [WORK] statements.

1. At the start of program execution, a transaction is implicitly started.

2. When a successful COMMIT or ROLLBACK is executed, the current
transaction is ended, and a new transaction is started.

3. If any failure occurs in a transaction (e.g. the violation of a constraint),
any subsequent operation in that transaction will also fail. Thus, if a
transaction fails, it must be explicitly rolled back - otherwise its failure
will pollute all subsequent operations.

NOTE: Some DBMS's allow the testing of certain constraints to be
deferred until the transaction is committed. In this case, of course, it is
the commit operation that actually fails. An unsuccessful COMMIT does not
end the transaction. The failed transaction must be explicitly rolled back.

4. Some DBMS's support an "autocommit" mode, in which each SQL
statement is automatically committed after being executed.

a) The db2 command interpreter operates in this mode by default.

b) An embedded SQL program can turn autocommit off or on. (For your
project, autocommit is turned off, so you need to commit explicitly,
which is appropriate since some of your transactions will require
multiple SQL statements)

8

c) If program not using autocommit terminates with an incomplete
transaction pending, it is handled in some default way - normally by
being rolled back automatically.

D. As a transaction is being processed, it passes through a series of STATES.

PROJECT

1. Active: from the time it starts, until it either fails or reaches its last
statement.

2. Partially committed: its last statement has executed, but its changes to
the database have not yet been made permanent.

Note: The SQL COMMIT statement places the transaction into the partially
committed state.

3. Committed: its changes to the database have been made permanent. A
soon as a transaction has partially committed, the DBMS attempts to
move it to the committed state - though there is no guarantee it will be
able to successfully do so. Once a transaction has reached the committed
state, the DBMS is obligated preserve its results, even if there is a crash

Active

Partially
Committed Committed

Failed Aborted

9

4. Failed: a logical error or user abort has precluded completion, so any changes it
has made to the database must be undone.

Note: The SQL ROLLBACK statement places the transaction into the failed state.

A SQL COMMIT that fails due to a constraint violation also places the transaction
into a failed state.

Once a transaction has failed, the DBMS must move the transaction to the
aborted state.

5. Aborted: all effects of the transaction have been removed from the database.

6. Some further points to note

a) There is a one-way connection from partially committed to failed - a
partially committed transaction can still fail; but a failed transaction
must end up aborted

b) Externally visible effects of the transaction (those seen by a user)
should be deferred until after the transaction is fully committed. These
include:

(1)The writing of messages to the user terminal such as “Transaction
complete”, or the sending of a confirmation email.

(2)Changes to data seen by other users concurrently accessing the
database.

(3)Sometimes, this can get complex - e.g. suppose one is withdrawing
cash from an ATM. One very important external event that is
visible to the user is the dispensing of cash. Presumably the
system must ensure that this is handled atomically with the
updating of the account balance!

10

III.Implementation of the ACID Properties

A. It is the responsibility of the author of the code for carrying out a transaction
to ensure the consistency property - i.e. the DBMS “believes” that any
transaction that is submitted to it, if executed in isolation, would be
consistent. (Though some inconsistencies due to user error might be detected
as a result of constraint violations.)

Example: if a transaction updated the balance in an account to a random
value, one could hardly expected the DBMS to deal with this!.

B. Strategies for achieving atomicity and durability are the subject of a later
chapter in the book and the lecture on Crash Control. Actual systems make
use of one of two ways to accomplish this:

1. The use of a LOG, in which information about changes is recorded before
the database itself is changed. If a crash occurs, data in the log can be
used to either complete the changes or undo the ones that were made by a
transaction that did not complete.

2. Less commonly, a "shadow" copy of part of the database.

3. Multiple copies of an item, so that transactions may access the value
written by an earlier transaction than one currently executing.

(More on these alternatives later)

C. Strategies for achieving isolation depend on the notions of SCHEDULES and
SERIALIZABILITY.

1. A transaction consists of a mixture of various kinds of operations, including
reading data from the database, doing computation, and writing data back to
the database. From the standpoint of ensuring isolation, it is the reads and
writes that are critical, since it is through these that transactions can end up
interacting with each other (i.e. by one transaction reading what another
wrote or by one transaction over-writing what another wrote.)

11

2. Thus, for purposes of managing concurrency, a transaction is regarded as
a series of read and write operations. When two or more transactions are
executing concurrently, the relative sequence of the read and write
operations in the two transactions constitutes a SCHEDULE.

Example: consider two transactions, one of which deposits $50.00 to a
checking account and another of which withdraws $100.00 from the same
account. (Perhaps, unknown to each other, a husband and wife
simultaneously access their joint account from two different ATM's.)

a) In SQL, the transactions would look like this (assuming the account
number is in the program variable ACCT):

UPDATE CHECKING_ACCOUNTS  
 SET BALANCE = BALANCE + 50.00  
 WHERE ACCOUNT_NO = :ACCT  
 
UPDATE CHECKING_ACCOUNTS  
 SET BALANCE = BALANCE - 100.00  
 WHERE ACCOUNT_NO = :ACCT  
 
PROJECT

b) It appears that each transaction involves a single step, but actually, from the
vantage point of the database, there are two separate steps in each:

(1)read the current value of BALANCE

(2)write a new value to BALANCE

with some computation in between.

c) From the standpoint of the database, the crucial operations are the reads and
writes. These two transactions could actually be executed n any one of six
different sequences (called SCHEDULES). Several different results are
possible, depending on the schedule chosen. (Assume in each case the
starting balance is $1000. Note that the correct final balance is 950):

12

Deposit (T1) Withdrawal (T2) Final balance

(S1) read (1000)
write (1050)

read (1050)
write (950)

950

(S2) read (1000)
read (1000)

write (1050)
write (900)

900

(S3) read (1000)
read (1000)
write (900)

write (1050)
1050

(S4) read (1000)
write (900)

read (900)
write (950)

950

(S5) read (1000)
read (1000)

write (900)
write (1050)

1050
(S6) read (1000)

read (1000)
write (1050)

write (900)
900

PROJECT

13

d) The six possible schedules lead to three different possible results.
Only two schedules lead to the correct result.

It happens that in tis case the correct orders involve doing one
transaction in its entirety first - then the other. These are called
SERIAL SCHEDULES. A serial schedule will always lead to a
consistent result, since each individual transaction executes
independently and each individual transaction produces a consistent
result.

e) In more complex situations, it is possible to get a consistent result
from certain non-serial schedules (but not all).

We saw an example of this earlier in when we were looking at
different schedules for two concurrent transfers of money from
checking to savings.

We will discuss this further shortly.

3. In order to preserve the integrity of the database when doing concurrent
processing, we will take measures to ensure that the actual schedule of
concurrent operations by two or more transactions is SERIALIZABLE -
that is, that it is EQUIVALENT TO SOME SERIAL SCHEDULE.
(Recall that a serial schedule will always be consistent if the individual
transactions comprising it are.)

a) Such a schedule must be consistent if each of the individual
transactions is.

b) Notice the use of the term "some" in "some serial schedule". We have
already noted that in some cases there may be two serial schedules that
actually produce different (but consistent) final results. In that case,
any schedule which is equivalent to either one of them is considered to
be serializable.

14

c) For a particular set of transactions, it may be possible to produce a
non-serializable schedule that also produces consistent results; but this
depends on detailed analysis of the computations done by the
transactions which is not algorithmically feasible. So we insist on
serializability to be sure the results are correct.

4. Unfortunately, a complicating factor that arises at this point is that there
are two different definitions of equivalence - one more stringent than the
other.

a) The more stringent definition is called CONFLICT EQUIVALENCE.
A schedule is said to be CONFLICT SERIALIZABLE if it is conflict
equivalent to some serial schedule.

b) The less stringent definition is called VIEW EQUIVALENCE. A
schedule is said to be VIEW SERIALIZABLE if it is view equivalent
to some serial schedule.

c) Every schedule that is conflict serializable is also view serializable;
however, the reverse is not necessarily true.

d) However, it turns out that testing a schedule to see if it is conflict
serializable is always algorithmically feasible, whereas testing it to see
if it is view serializable may, in some cases, require exponential time.

15

IV.Equivalence of Schedules

A. In general, two schedules are equivalent if we can interchange the operations in
one of the schedules in such a way as to turn it into the other schedule, without
altering the computation that would be produced. (Making no assumptions
about what kind of computation takes place between operations).

Example: The schedule

T1 T2

read A
read B

write A
write B

Can be turned into the serial schedule:

T1 T2

read A
write A

read B
write B

PROJECT Example 1

by exchanging the write A and read B operations. Since switching these two
operations cannot possibly have any impact on the final state of the database
(given that A and B are two different data items), these two schedules are
equivalent.

B. Of course, we cannot interchange two operations occurring in the SAME
transaction, since that could easily result in changing the computation it
performs. Rather, we consider only changing the relative order of operations
occurring in different transactions.

16

C. Conflict Equivalence.

1. We say that two operations occurring in two different transactions
CONFLICT if:

a) they access the same data item.

(Note: by a data item we mean a particular field of a particular record.
No conflict occurs if two transactions access the same field from
DIFFERENT records, or DIFFERENT fields from the same record.)

b) At least one of them is a write

c) In general, changing the relative order to two conflicting operations
can result in different final outcome.

Examples

(1)T1 T2
write A

read A

Clearly, if these two operations are switched, T2 will read a different
value for A - the value that was in the database before T1 and T2 started.

PROJECT Example 2

(2)T1 T2
read A

write A

Here, T1 will read the value for A that was in the database before
T1 and T2 started. If the operations are switched, T1 will read the
value written by T2 instead.

PROJECT Example 3

17

(3)T1 T2
write A

write A

Here, if the operations are switched, there will be a different final
value in the database when both transactions complete.

PROJECT Example 4

(4)But note: if T1 and T2 both read the same item, there is no conflict.

T1 T2
read A

read A

will always produce the same results as

T1 T2
read A

read A

PROJECT Example 5

2. We say that two schedules S1 and S2 (consisting of the same set of
transactions) are CONFLICT EQUIVALENT if one can be transformed
into the other by a series of interchanges of non-conflicting operations of
different transactions.

Example: The following schedules are conflict-equivalent

T1 T2 | T1 T2

read A | read A
read B | write A

write A | read B
write B | write B

(They differ in the relative orders of read B and write A, which access
different data items.)

PROJECT Example 6

18

Example: The following schedules are NOT conflict equivalent

T1 T2 | T1 T2

read A | read A
read A | write A

write A | read A
write B | write B

Project Example 7

3. We say that a schedule is CONFLICT SERIALIZABLE if there exists a
serial schedule to which it is conflict equivalent.

Example: The first schedule in the first pair above is not a serial schedule,
but it is conflict equivalent to the second schedule which is serial, so it is
conflict serializable.

Example: The first schedule in the second pair above is not conflict
equivalent to any serial schedule; therefore it is not conflict serializable.

D. View Equivalence

1. It turns out that, if our interest is in whether two schedules have the same final
impact on the database, conflict equivalence is sometimes too strict of a test.

Example: Consider the following pair of schedules

T1 T2 T3 | T1 T2 T3

read A | read A
write A | write A

write A | write A
write A | write A

PROJECT Example 8

19

These schedules are not conflict equivalent, because transforming one to
another involves exchanging T2 and T3's write A operation, which conflict.
However, given that no read A operations intervene between T2 and T3's write
A operations and T1's, the two schedules do have the same impact on the
database, since the only value of A any subsequent transaction will see is the
one written by T1

(The write A operations in T2 and T3 are called USELESS WRITES because no
other transaction ever reads the values they write).

2. Though not equivalent by the standard of conflict equivalence, these two
schedules are equivalent by the standard of VIEW EQUIVALENCE.
Two schedules S1 and S2 (consisting of the same set of transactions) are
view equivalent if:

a) If in S1, some transaction T reads the initial value of some item Q,
then in S2, T also reads the initial value of Q.

b) For each pair of transactions Ti and Tj such that in S1 Ti reads a
certain data item Q that was written by Tj, then the same holds in S2,
and vice-versa.

c) For each transaction Ti that does the LAST write to a certain data item
Q in S1, Ti also does the last write to Q in S2.

Example: The two schedules in the last example above, though not
conflict equivalent, are view equivalent.

3. Note that any two schedules that are conflict equivalent are also view
equivalent - the operations permitted to transform one schedule to another
in a conflict equivalent way do not result in violating any of the rules for
view equivalence.

4. We say that a schedule is VIEW SERIALIZABLE if it is view equivalent
to some serial schedule.

20

E. Note that equivalence - by either criterion - is a stronger condition than just
saying that the two schedules produce the same final result

1. Two equivalent schedules (by either standard) will always produce the
same final result.

2. But the converse is not necessarily true: schedules can produce the same final
result without being equivalent.

Example: When we enumerated six possible schedules for the simple pair of
deposit and withdrawal transactions, we saw that two of them (S1 and S4)
gave the correct result. However, they are not equivalent by either definition.

Each was equivalent to some serial schedule (in fact, each was serial), so each
was serializable though they were not equivalent to each other.

3. Thus, equivalence of schedules is a stronger requirement than saying that two
schedules produce the same final result. This is because in defining
equivalence, we say nothing about the kinds of computation we will allow to
occur between the reads and writes. In fact, it is certainly possible to conceive
of a pair of transactions such that schedules similar to S1 and S4 WILL
produce different results - for example, if T1 were Deposit $50.00 (as
before), and T2 were Credit 10% interest to the balance.

(But both would still be serializable and thus considered consistent, even
though final results differ.)

F. In order to ensure correctness of concurrent operation, we must ensure that
the schedule we follow is serializable.

1. In our initial example with deposit and withdrawal transactions, the two
schedules that produced correct results (S1 and S4) were both serial
schedules. None of the erroneous schedules (S2, S3, S5, or S6) are
serializable. (We will prove this shortly.)

2. In our example of two transfers we exhibited a non-serial schedule that
gives a correct answer.

21

Initial checking balance $2000; initial savings balance $1000

Manual Transfer Transaction (T1) Automatic Transfer Transaction (T2)

Reads checking balance ($2000)
Subtracts $100 to give $1900
Writes checking balance ($1900)

Reads checking balance ($1900)
Subtracts 10% ($190) to give $1710
Writes checking balance ($1710)

Reads savings balance ($1000)
Adds $100 to give $1100
Writes savings balance ($1100)

Reads savings balance ($1100)
Adds $190 to give $1290
Writes savings balance ($1290)

Final sum of balances is $1710 + $1290 = $3000

This schedule is conflict serializable; it is conflict equivalent to:

Manual Transfer Transaction (T1) Automatic Transfer Transaction (T2)

Reads checking balance ($2000)
Subtracts $100 to give $1900
Writes checking balance ($1900)
Reads savings balance ($1000)
Adds $100 to give $1100
Writes savings balance ($1100)

Reads checking balance ($1900)
Subtracts 10% ($190) to give $1710
Writes checking balance ($1710)
Reads savings balance ($1100)
Adds $190 to give $1290
Writes savings balance ($1290)

Final sum of balances is $1710 + $1290 = $3000 - consistent

PROJECT

which is a serial schedule. (Explain operation movements)

22

3. We observe, then, that any serializable schedule will give a consistent
result, while a non-serializable schedule may not give a consistent result.
(But note that two serializable schedules could give different results, just
as two serial schedules can. However, we will regard either result as
acceptable since it is consistent.)

V. Testing for Serializability

A. Since any schedule that is serializable produces consistent results, and a non-
serializable schedule may not do so, it is clearly desirable to be able to test a
given schedule to see if it is serializable. Unfortunately, this can be
computationally expensive for the general definition of view serializability.
If we use the more stringent standard of conflict serializability, then we can
test for serializability more easily.

B. We can test for conflict serializability by constructing a PRECEDENCE
GRAPH as follows:

1. Let each transaction be a node in the precedence graph.

2. Let there be a directed edge from a transaction T1 to a transaction T2 if
one or more of the following occur:

a) T1 executes a read on some item before T2 executes a write on it

b) T1 executes a write on some item before T2 executes a read on it

c) T1 executes a write on some item before T2 executes a write on it

Each such edge represents the existence of a pair of conflicting
operations which cannot be interchanged. Thus, in any conflict
equivalent schedule, T1's operation must occur before T2's - which
means in a conflict equivalent serial schedule ALL of T1 must occur
before all of T2.

23

3. If the resulting graph contains a cycle, then the schedule is not conflict
serializable.

a) It the graph is acyclic, then any topological sorting of the resultant
precedence graph will give an equivalent serial schedule.

Example: Consider our example schedule for automatic and manual
transfers that produced an incorrect final result.

Initial checking balance $2000; initial savings balance $1000

Manual Transfer Transaction (T1) Automatic Transfer Transaction (T2)

Reads checking balance ($2000)
Reads checking balance ($2000)

Subtracts $100 to give $1900
Writes checking balance ($1900)

Subtracts 10% ($200) to give $1800
Writes checking balance ($1800)
Reads savings balance ($1000)
Adds $200 to give $1200
Writes savings balance ($1200)

Reads savings balance ($1200)
Adds $100 to give $1300
Writes savings balance ($1300)

Final sum of balances is $1800 + $1300 = $3100 - inconsistent!

Its precedence graph is:

PROJECT

The edge from T1 to T2 arises because T1 must do its read before T2 does
its write. The edge from T2 to T1 arises because T2 must do its read before
T1 does its write.

T1 T2

24

Clearly, this graph contains a cycle, so this schedule is not serializable.

Example: Consider our non-serial, but serializable transfer/withdrawal
schedule.

Initial checking balance $2000; initial savings balance $1000

Manual Transfer Transaction (T1) Automatic Transfer Transaction (T2)

Reads checking balance ($2000)
Subtracts $100 to give $1900
Writes checking balance ($1900)

Reads checking balance ($1900)
Subtracts 10% ($190) to give $1710
Writes checking balance ($1710)

Reads savings balance ($1000)
Adds $100 to give $1100
Writes savings balance ($1100)

Reads savings balance ($1100)
Adds $190 to give $1290
Writes savings balance ($1290)

Final sum of balances is $1710 + $1290 = $3000

Its precedence graph is:

The edge from T1 to T2 arises for two reasons: T1 must do its read before
T2 does its write, and T2 reads the value written by T1.

PROJECT

Since this graph is acyclic, a topological sort is possible, with T1 done first,
then T2. This yields the equivalent serial schedule we noted previously.

25

T1 T2

C. Testing for view serializability can also be done by using a precedence graph
- but in some cases, the process is much more complex. We will not discuss
the actual process here.

D. Of course, simply testing for serializability is not enough - we want to ensure
serializability. This will be a topic in the next series of lectures - for now, we
note that there are two general approaches that can be used.

1. We can make use of LOCKS, whereby a transaction is allowed to obtain
exclusive access to some portion of the database for some period of time.
Proper use of locking (a topic in the next lectures) can ensure that no
unserializable schedule can occur.

2. We can make use of a rollback and restart strategy - whereby, when we
detect that allowing a given transaction to complete would result in an
unserializable schedule, we rollback an appropriate transaction and restart
it from scratch. This, again, is a topic in the next lecture.

VI.Recoverabilty and Cascading Rollback

A. One final issue we must deal with results from the fact that a transaction's
results are not "official" until the transaction has committed. In particular, if
some transaction writes a value that is then read by another transaction, and
the first transaction fails for any reason before it commits, then any
transaction that read what it had written before it committed must be rolled
back and restarted.

B. However, what if the transaction that read the uncommitted value has itself
committed before the first transaction is rolled back? We call such a schedule
an UNRECOVERABLE schedule.

26

Example:

T1 T2

read A
write A

read A
write A
fully commits

does some further computation, then fails

PROJECT

This schedule could clearly lead to potential inconsistency - e.g. what if T1
and T2 were each adding 1 to the value of A? Correct execution of T1 and
T2 should result in A being increased by 2; but execution of either alone
should only increase A by 1. Here, even though T1 failed, A has been
increased by 2. Further, if T1 were restarted, A would be increased by 3 even
though each transaction has only “officially” executed once.

C. We therefore must ensure that any schedule that we produce as the result of
concurrent execution is not only serializable, but also RECOVERABLE.

1. By this we mean that no transaction can commit until any transaction that
produced data it uses has itself committed.

2. If a transaction T2 uses data produced by T1, and T1 fails to commit,
then T2 must also fail. (It can be restarted from scratch, but the current
execution must not be allowed to commit.)

D. Of course, the possibility that the failure of one transaction might force the
failure of another leads to the possibility of a chain of failures (e.g. T2 reads
data produced by T1; then T3 reads data produced by T2; then T4 reads data
produced by T3 ... then T1 fails - T2, T3, T4 etc. must also fail.)

27

1. This phenomenon is known as CASCADING ROLLBACK, and is
obviously undesirable.

2. We may therefore chose to insist on producing only CASCADELESS
SCHEDULES, in which cascading rollback cannot occur. In such a
schedule, no transaction is allowed to read a value written by another
transaction until the preceding transaction has fully committed. (A
transaction that needs to read a data item that has just been written by
another transaction must be delayed until the first transaction either fully
commits or fails - in the latter case, the previous value of the item is
read.)

3. Clearly, a cascadeless schedule is also recoverable.

4. Alternately, we may not require recoverability, but at the possible expense
of cascading rollback (which, in a large database with many different
items, is unlikely to involve many transactions,

VII.Relaxing Strict Serializability

A. Ensuring strict consistency requires that we only execute serial schedules.
But doing so may limit the amount of concurrency that is possible in a
system distributed over multiple processors / disks. For performance
reasons, then, systems sometimes settle for something less than strict
serializability to meet performance goals - even at the risk of possibly
introducing some inconsistency.

B. The SQL standard defines four levels of isolation between transactions. One
of these is the default, but a given transaction may specify a different level
when it is started.

1. Serializability - the DBMS will ensure that the schedule in which this
transaction is executed is serializable. (Actually, as the book notes, some
implementations may permit a nonserializable execution even then.)

28

2. Repeatable read

a) The transaction may only read data written by committed transactions.
(If it needs to read an item written by a transaction that has not yet
committed, it must wait until that transaction commits.)

b) If the transaction reads some data item twice, it is guaranteed to see
the same value both times. No other transaction may alter the value of
the item between the reads, even if it writes the item and then commits
between the two reads.

3. Read committed

a) The transaction may only read data written by committed transactions.
(If it needs to read an item written by a transaction that has not yet
committed, it must wait until that transaction commits.)

b) If the transaction reads some data item twice, it may see different
values if some other transaction alters the value and then commits
between the reads.

c) This is generally the default for transactions that don't specify a
different isolation level.

4. Read uncommitted - the transaction may read data written by other
transactions that have not yet committed. (This may be appropriate for
summary-type transactions that do not depend on absolute consistency,)

29

