
CPS352 Lecture - The Transaction Concept

Last Revised March 24, 2021
Objectives:

1. To introduce the notion of a transaction and the ACID properties of a transaction
2. To introduce the notion of the state of a transaction
3. To introduce the notion of schedules, serializable schedules, and testing for 

serializability
4. To introduce the notions of recoverability and cascading rollback
5. To introduce the notion of compromising strict serializability for performance sake 

Materials:

1. Projectables of consistent (2) and inconsistent results from the concurrent 
execution of two transfer transactions

2. Projectable of transaction state transitions
3. Projectables of SQL code and alternate schedules for concurrent deposit and 

withdrawal to same account
4. Projectables of various serializabilty examples numbered 1..8
5. Repeat of non-serial concurrent pair of transfer transactions and serial 

equivalent
6. Repeat of unserializable concurrent pair of transfer transactions and its 

precedence graph
7. Repeat of serializable concurrent pair of transfer transactions and its precedence graph
8. Example of a schedule with rollback

I. Introduction

A. At the start of the course, we noted that one key responsibility is to preserve 
the integrity of the database by dealing with issues that could otherwise lead 
to its corruption.  In the next few lectures, we want to deal with two of these 
in particular:
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1. CONCURRENCY CONTROL deals with ensuring that the integrity of 
the database is preserved when it is being simultaneously accessed by 
more than one user (a critical capability for many systems using DBMS's)

2. CRASH CONTROL deals with ensuring that the integrity of the database 
is preserved even if a system crash (perhaps arising from factors outside 
the control of the DBMS) should occur while changes are being made to 
the database.

B. Though these seem like two rather diverse issues, it turns out that a key 
concept is at the heart of measures for dealing with both of them - the 
concept of a TRANSACTION.

C. A preliminary definition: We say that the database is in a CONSISTENT state 
if there are no contradictions between items stored in the database.

1. However, during the course of routine processing, it is sometimes necessary for 
the database to momentarily enter an inconsistent state 
 

Example:   
 

In a banking system, a customer requests a transfer of funds from a checking 
account to his savings account. Note that this operation results in a change to the 
balances in both accounts; however, the SUM of the two balances is not 
changed.  Thus, the database is consistent  if the sum of the two balances is 
correct.  However, in processing the  transfer, it will necessarily be the case that 
one of the two new balances is written to disk before the other (they can't both 
be written at exactly the same time if they are stored on the same disk and even 
if they are on different disks it is unlikely that both would be changed at exactly 
the same time.)  Thus, during the brief interval between the two write operations 
the database on disk is actually in an inconsistent state.

2. The DBMS must take measures to ensure that this momentary 
inconsistency does not become permanent.

a) A failure or a crash at this instant could "freeze" that inconsistency.
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b) If another user were to access the data at this point, that user would see 
inconsistent data; and if user were performing an operation that updated the 
database, the inconsistent data might be incorporated into that update.

3. In the case of concurrent processing, overlapping of two operations on the 
same data could also result in inconsistency.  

 

Example: consider what happens if  a customer transfers $100 from their 
checking account and an automatic transfer program is run that transfers 
10% of their checking balance to savings. 

 

For the purpose of the example, assume that the initial balance in the 
checking account is $2000, while the savings balance is $1000.  We will 
say that the result of the two transfers is consistent if the sum of the two 
balances - which is $3000 before - is also $3000 after. 

a. First, we consider what would happen if the manual transfer is done 
completely first.   

 

Initial checking balance $2000; initial savings balance $1000 
 

Manual  Transfer Transaction (T1) Automatic Transfer Transaction (T2) 
 

Reads checking balance ($2000) 
Subtracts $100 to give $1900 
Writes checking balance ($1900) 
Reads savings balance ($1000) 
Adds $100 to give $1100 
Writes savings balance ($1100) 

Reads checking balance ($1900) 
Subtracts 10% ($190) to give $1710 
Writes checking balance ($1710) 
Reads savings balance ($1100) 
Adds $190 to give $1290 
Writes savings balance ($1290) 

 

Final sum of balances is $1710 + $1290 = $3000 - consistent 

 

PROJECT
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b. Now consider what would happen if the two operations were overlapped as 
follows: 
 
Initial checking balance $2000; initial savings balance $1000 
 

Manual  Transfer Transaction (T1) Automatic Transfer Transaction (T2) 
 
Reads checking balance ($2000) 
Subtracts $100 to give $1900 
Writes checking balance ($1900) 

Reads checking balance ($1900) 
Subtracts 10% ($190) to give $1710 
Writes checking balance ($1710) 

Reads savings balance ($1000) 
Adds $100 to give $1100 
Writes savings balance ($1100) 

Reads savings balance ($1100) 
Adds $190 to give $1290 
Writes savings balance ($1290) 

 
Final sum of balances is $1710 + $1290 = $3000  
- same as above, so consistent 
 
PROJECT
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c. But it is also possible to overlap the transactions in such a way as to produce 
an inconsistent result: 
 

Initial checking balance $2000; initial savings balance $1000 
 

Manual  Transfer Transaction (T1) Automatic Transfer Transaction (T2) 

 

Reads checking balance ($2000) 
Reads checking balance ($2000) 

Subtracts $100 to give $1900 
Writes checking balance ($1900) 

Subtracts 10% ($200) to give $1800 
Writes checking balance ($1800) 
Reads savings balance ($1000) 
Adds $200 to give $1200 
Writes savings balance ($1200) 

Reads savings balance ($1200) 
Adds $100 to give $1300 
Writes savings balance ($1300) 

 

Final sum of balances is $1800 + $1300 = $3100 - inconsistent! 

4. Actually, it is also possible for a pair of transactions to be executed in two 
different ways that are both consistent, yet produce different results. 
 

Example: Suppose the automatic transfer is done completely first. Then 
what are the final results? 
 

ASK 
 

Though this is slightly different, is it consistent? 
 

ASK

5. We have seen four different ways of ordering the operations, three of 
which produce consistent (though in one case slightly different) results, 
and one of which produces inconsistent results.  We'll see shortly how we 
can look at a sequence of operations and know whether it can be shown to 
produce consistent results.
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II. The Transaction Concept

A. At the heart of strategies for preventing problems like these is that we 
conceive of the DBMS's work as basically involving the processing of a 
series of TRANSACTIONS.  

1. Each transaction begins with the database in a consistent state, and ends 
with the database in a consistent state - but may momentarily place the 
database into an inconsistent state due to the necessity of performing 
updates one after another.

2. We can define a transaction formally as follows: a transaction is an 
atomic operation involving a series of processing steps, including:

a) The reading of zero or more items from the database.

b) The writing of one or more items to the database. 
 

(Actually, there is such a thing as a read only transaction that reads 
data from the database, but writes nothing; such transactions, however, 
do not cause problems of the sort we have discussed, though they do 
need to be considered in the context of concurrency.) 
 

Further, if the database is in a consistent state when a transaction is 
begun, then it will still be in a consistent state when the processing of 
the entire transaction is complete.

c) Of course, a transaction will do computation with the data it accesses 
in the database, but from the standpoint of the DBMS the transaction 
only interacts with the database via reads and writes (where operations 
such as insert or delete can be thought of as a variant of write.)

B. To preserve system consistency, we must guarantee that each transaction 
satisfies four requirements.  These are called the ACID properties, after  the 
first letters of their names.
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1. ATOMICITY: We must guarantee that each transaction is processed   
ATOMICALLY - i.e. either none of it is done, or all of it is done.  It  must 
NOT be possible for only part of a transaction to be carried out. 

a) This means that if a transaction is aborted for any reason (due to a 
logical error in the data or a request by the user, then all effects of the 
transaction must be removed from the database and the database must 
be restored to the state it was in before the transaction was begun. 

b) This also means that if a system crash occurs in the middle of  
processing a transaction, then either:

(1)Upon system restart, the system must be restored to its state before 
the transaction was started (in which case the transaction has no 
effect - but can be restarted from scratch.) 
 

or

(2)Upon system restart, the work that was not done because of the 
crash is completed before any new work is begun.

2. CONSISTENCY: If a transaction is executed in isolation (with no other 
transactions executing concurrently), and the database is in a consistent 
state when the transaction starts, then it will still be in a consistent state 
when it is finished.

3. ISOLATION: Even if transactions are executing concurrently, the overall result 
is the same as if they executed serially - i.e. as if each transaction executed in 
isolation, with one transaction completing before the next begins. 

a) This was the problem with our earlier example about depositing 
money into an account at the same time interest was being posted to it. 
Each  transaction was consistent in isolation, but they interacted in 
such a way as to produce inconsistency. 

b) Note that we consider the isolation property to be satisfied if the result 
is equivalent to ANY serial ordering of the transactions being 
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processed - e.g. as we already noted execution of both a deposit and 
interest posting would give two different  final balances in the account 
if the deposit was done before interest was posted or after it was 
posted - but either result is acceptable. 

4. DURABILITY: Once a transaction is completed, its effects on the database 
must persist, even if there is a subsequent system crash. This may mean 
restoring some data that was destroyed by a crash upon restart.)

C. In SQL, transactions are can either be defined explicitly by BEGIN TRANSACTION 
and END TRANSACTION (within embedded code), or - more typically - implicitly, 
by the COMMIT [ WORK ] and ROLLBACK [ WORK ] statements.

1. At the start of program execution, a transaction is implicitly started.

2. When a successful COMMIT or ROLLBACK is executed, the current 
transaction is ended, and a new transaction is started.

3. If any failure occurs in a transaction (e.g. the violation of a constraint), 
any subsequent operation in that transaction will also fail.  Thus, if a 
transaction fails, it must be explicitly rolled back - otherwise its failure 
will pollute all subsequent operations. 
 

NOTE: Some DBMS's allow the testing of certain constraints to be 
deferred until the transaction is committed.  In this case, of course, it is 
the commit operation that actually fails. An unsuccessful COMMIT does not 
end the transaction.  The failed transaction must be explicitly rolled back.

4. Some DBMS's support an "autocommit" mode, in which each SQL 
statement is automatically committed after being executed.

a) The db2 command interpreter operates in this mode by default.

b) An embedded SQL program can turn autocommit off or on. (For your 
project, autocommit is turned off, so you need to commit explicitly, 
which is appropriate since some of your transactions will require 
multiple SQL statements)
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c) If program not using autocommit terminates with an incomplete  
transaction pending, it is handled in some default way - normally by 
being rolled back automatically.  

D. As a transaction is being processed, it passes through a series of STATES. 
 

  
 
PROJECT

1. Active: from the time it starts, until it either fails or reaches its last 
statement.

2. Partially committed: its last statement has executed, but its  changes to 
the database have not yet been made permanent. 
 

Note: The SQL COMMIT statement places the transaction into the partially 
committed state.

3. Committed: its changes to the database have been made permanent.  A 
soon as a transaction has partially committed, the DBMS attempts to 
move it to the committed state - though there is no guarantee it will be 
able to successfully do so.  Once a transaction has reached the committed 
state, the DBMS is obligated preserve its results, even if there is a crash

Active

Partially
Committed Committed

Failed Aborted
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4. Failed: a logical error or user abort has precluded completion, so any changes it 
has made to the database must be undone. 
 

Note: The SQL ROLLBACK statement places the transaction into the failed state. 
 

A SQL COMMIT that fails due to a constraint violation also places the transaction 
into a failed state. 
 

Once a transaction has failed, the DBMS must move the transaction to the 
aborted state.

5. Aborted: all effects of the transaction have been removed from the database.

6. Some further points to note

a) There is a one-way connection from partially committed to failed - a 
partially committed transaction can still fail; but a failed transaction 
must end up aborted

b) Externally visible effects of the transaction (those seen by  a user) 
should be deferred until after the transaction is fully committed.  These 
include:

(1)The writing of messages to the user terminal such as “Transaction 
complete”, or the sending of a confirmation email.

(2)Changes to data seen by other users concurrently accessing the 
database.

(3)Sometimes, this can get complex - e.g. suppose one is withdrawing 
cash from an ATM.  One very important external event that is 
visible to the user is the dispensing of cash.   Presumably the 
system must ensure that this is handled atomically with the 
updating of the account balance!
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III.Implementation of the ACID Properties

A. It is the responsibility of the author of the code for carrying out a transaction 
to ensure the consistency property - i.e. the DBMS “believes” that any 
transaction that is submitted to it, if executed in isolation, would be 
consistent.  (Though some inconsistencies due to user error might be detected 
as a result of constraint violations.) 

 

Example: if a transaction updated the balance in an account to a random 
value, one could hardly expected the DBMS to deal with this!.

B. Strategies for achieving atomicity and durability are the subject of a later 
chapter in the book and the lecture on Crash Control.  Actual systems make 
use of one of two ways to accomplish this: 

1. The use of a LOG, in which information about changes is recorded before 
the database itself is changed.  If a crash occurs, data in the log can be 
used to either complete the changes or undo the ones that were made by a 
transaction that did not complete.

2. Less commonly, a "shadow" copy of part of the database.

3. Multiple copies of an item, so that transactions may access the value 
written by an earlier transaction than one currently executing. 

 

(More on these alternatives later)

C. Strategies for achieving isolation depend on the notions of SCHEDULES and 
SERIALIZABILITY.

1. A transaction consists of a mixture of various kinds of operations, including 
reading data from the database, doing computation, and writing data back to 
the database.  From the standpoint of ensuring isolation, it is the reads and 
writes that are critical, since it is through these that transactions can end up 
interacting with each other (i.e. by one transaction reading what another 
wrote  or by one transaction over-writing what another wrote.)
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2. Thus, for purposes of managing concurrency, a transaction is regarded as 
a series of read and write operations.  When two or more transactions are 
executing concurrently, the relative sequence of the read and write 
operations in the two transactions constitutes a SCHEDULE. 
 
Example: consider two transactions, one of which deposits $50.00 to a 
checking account and another of which withdraws $100.00 from the same 
account.  (Perhaps, unknown to each other, a husband and wife 
simultaneously access their joint account from two different ATM's.)

a) In SQL, the transactions would look like this (assuming the account 
number is in the program variable ACCT): 
 
UPDATE CHECKING_ACCOUNTS  
    SET BALANCE = BALANCE + 50.00  
    WHERE ACCOUNT_NO = :ACCT  
 
UPDATE CHECKING_ACCOUNTS  
    SET BALANCE = BALANCE - 100.00  
    WHERE ACCOUNT_NO = :ACCT  
 
PROJECT

b) It appears that each transaction involves a single step, but actually, from the 
vantage point of the database, there are two separate steps in each:

(1)read the current value of BALANCE

(2)write a new value to BALANCE 

 

with some computation in between.

c) From the standpoint of the database, the crucial operations are the  reads and 
writes.  These two transactions could actually be executed n any one of six 
different sequences (called SCHEDULES).  Several different results are 
possible, depending on the schedule chosen. (Assume in each case the 
starting balance is $1000.  Note that the correct final balance is 950): 
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Deposit (T1) Withdrawal (T2) Final balance 
 

(S1) read (1000)  
write (1050) 

read (1050) 
write (950) 

950 

 

(S2) read (1000) 
read (1000) 

write (1050) 
write (900) 

900 

 

(S3) read (1000) 
read (1000) 
write (900) 

write (1050) 
1050 

 

(S4) read (1000) 
write (900) 

read (900) 
write (950) 

950 

 

(S5) read (1000) 
read (1000) 

write (900) 
write (1050) 

1050 
(S6) read (1000) 

read (1000) 
write (1050) 

write (900) 
900 

 
PROJECT 
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d) The six possible schedules lead to three different possible results. 
Only two schedules lead to the correct result. 
 

It happens that in tis case the correct orders involve doing one 
transaction in its entirety first - then the other.  These are called 
SERIAL SCHEDULES.  A serial schedule will always lead to a 
consistent result, since each individual transaction executes 
independently and each individual transaction produces a consistent 
result.

e) In more complex situations, it is possible to get a consistent result 
from certain non-serial schedules (but not all).    
 
We saw an example of this earlier in when we were looking at 
different schedules for two concurrent transfers of money from 
checking to savings. 
 
We will discuss this further shortly.

3. In order to preserve the integrity of the database when doing concurrent 
processing, we will take measures to ensure that the actual schedule of 
concurrent operations by two or more transactions is SERIALIZABLE - 
that is, that it is EQUIVALENT TO SOME SERIAL SCHEDULE.  
(Recall that a serial schedule will always be consistent if the individual 
transactions comprising it are.)

a) Such a schedule must be consistent if each of the individual 
transactions is.

b) Notice the use of the term "some" in "some serial schedule".  We have 
already noted that in some cases there may be two serial schedules that 
actually produce different (but consistent) final results.  In that case, 
any schedule which is equivalent to either one of them is considered to 
be serializable.
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c) For a particular set of transactions, it may be possible to produce a 
non-serializable schedule that also produces consistent results;  but this 
depends on detailed analysis of the computations done by the 
transactions which is not algorithmically feasible.  So we insist on 
serializability to be sure the results are correct.

4. Unfortunately, a complicating factor that arises at this point is that there 
are two different definitions of equivalence - one more stringent than the 
other.

a) The more stringent definition is called CONFLICT EQUIVALENCE. 
A schedule is said to be CONFLICT SERIALIZABLE if it is conflict 
equivalent to some serial schedule.

b) The less stringent definition is called VIEW EQUIVALENCE.  A 
schedule is said to be VIEW SERIALIZABLE if it is view equivalent 
to some serial schedule.

c) Every schedule that is conflict serializable is also view  serializable; 
however, the reverse is not necessarily true.

d) However, it turns out that testing a schedule to see if it is conflict 
serializable is always algorithmically feasible, whereas testing it to see 
if it is view serializable may, in some cases, require exponential time.
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IV.Equivalence of Schedules

A. In general, two schedules are equivalent if we can interchange the  operations in 
one of the schedules in such a way as to turn it into the other schedule, without 
altering the computation that would be produced. (Making no assumptions 
about what kind of computation takes place between operations). 
 

Example: The schedule 
 
T1 T2 
 

read A 
read B 

write A 
write B 

 
Can be turned into the serial schedule: 
 
T1 T2 
 

read A 
write A 

read B 
write B 

 

PROJECT Example 1 
 
by exchanging the write A and read B operations.  Since switching these two 
operations cannot possibly have any impact on the final state of the database 
(given that A and B are two different data items), these two schedules are 
equivalent. 

B. Of course, we cannot interchange two operations occurring in the SAME 
transaction, since that could easily result in changing the computation it 
performs.  Rather, we consider only changing the relative order of operations 
occurring in different transactions.
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C. Conflict Equivalence.

1. We say that two operations occurring in two different transactions 
CONFLICT if:

a) they access the same data item.  
 

(Note: by a data item we mean a particular field of a particular record.  
No conflict occurs if two transactions access the same  field from 
DIFFERENT records, or DIFFERENT fields from the same record.)

b) At least one of them is a write

c) In general, changing the relative order to two conflicting operations 
can result in different final outcome. 
 
Examples

(1)T1 T2  
write A 

read A 
 

Clearly, if these two operations are switched, T2 will read a different 
value for A - the value that was in the database before T1 and T2 started. 
 
PROJECT Example 2

(2)T1 T2 
read A 

write A  

 

Here, T1 will read the value for A that was in the database before 
T1 and T2 started.  If the operations are switched, T1  will read the 
value written by T2 instead. 

 

PROJECT Example 3
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(3)T1 T2 
write A 

write A 

 

Here, if the operations are switched, there will be a different final 
value in the database when both transactions complete. 

 

PROJECT Example 4

(4)But note: if T1 and T2 both read the same item, there is no conflict. 
 
T1 T2 
read A 

read A 

 

will always produce the same results as 

 

T1 T2 
read A 

read A 

 

PROJECT Example 5

2. We say that two schedules S1 and S2 (consisting of the same set of 
transactions) are CONFLICT EQUIVALENT if one can be transformed 
into the other by a series of interchanges of non-conflicting operations of  
different transactions. 
 

Example: The following schedules are conflict-equivalent 
 

T1 T2 | T1 T2 
 

read A | read A 
read B | write A 

write A | read B 
write B | write B 

 

(They differ in the relative orders of read B and write A, which access 
different data items.) 
 
PROJECT Example 6 
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Example: The following schedules are NOT conflict equivalent 
 

T1 T2 | T1 T2 
 

read A | read A 
read A | write A 

write A | read A 
write B | write B 

 
Project Example 7

3. We say that a schedule is CONFLICT SERIALIZABLE if there exists a 
serial schedule to which it is conflict equivalent. 
 

Example: The first schedule in the first pair above is not a serial schedule, 
but it is conflict equivalent to the second schedule which is serial, so it is 
conflict serializable. 
 

Example: The first schedule in the second pair above is not conflict 
equivalent to any serial schedule; therefore it is not conflict serializable.

D. View Equivalence

1. It turns out that, if our interest is in whether two schedules have the same final 
impact on the database, conflict equivalence is sometimes too strict of a test. 
 
Example: Consider the following pair of schedules 
 
T1 T2 T3 | T1 T2 T3 
 

read A | read A 
write A | write A 

write A | write A  
write A | write A 
 
PROJECT Example 8 
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These schedules are not conflict equivalent, because transforming one  to 
another involves exchanging T2 and T3's write A operation, which conflict.  
However, given that no read A operations intervene between T2 and T3's write 
A operations and T1's, the two schedules do have the same impact on the 
database, since the only value of A any subsequent transaction will see is the 
one written by T1  
 

(The write A operations in T2 and T3 are called USELESS WRITES because no 
other transaction ever reads the values they write).

2. Though not equivalent by the standard of conflict equivalence, these two 
schedules are equivalent by the standard of VIEW   EQUIVALENCE. 
Two schedules S1 and S2 (consisting of the same set of transactions) are 
view equivalent if:

a) If in S1, some transaction T reads the initial value of some item Q, 
then in S2, T also reads the initial value of Q.

b) For each pair of transactions Ti and Tj such that in S1 Ti reads a 
certain data item Q that was written by Tj, then the same holds in S2, 
and vice-versa.

c) For each transaction Ti that does the LAST write to a certain data item 
Q in S1, Ti also does the last write to Q in S2. 
 

Example: The two schedules in the last example above, though not 
conflict equivalent, are view equivalent.

3. Note that any two schedules that are conflict equivalent are also view 
equivalent - the operations permitted to transform one schedule to another 
in a conflict equivalent way do not result in violating any of the rules for 
view equivalence.

4. We say that a schedule is VIEW SERIALIZABLE if it is view equivalent 
to some serial schedule.
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E. Note that equivalence - by either criterion - is a stronger condition than just 
saying that the two schedules produce the same final result

1. Two equivalent schedules (by either standard) will always produce the 
same final result.

2. But the converse is not necessarily true: schedules can produce the same final 
result without being equivalent. 

 

Example: When we enumerated six possible schedules for the simple  pair of 
deposit and withdrawal transactions, we saw that two  of them (S1 and S4) 
gave the correct result.  However, they are not equivalent by either definition.  

 

Each was equivalent to some serial schedule (in fact, each was serial), so each 
was serializable though they were not equivalent to each other.

3. Thus, equivalence of schedules is a stronger requirement than saying that two 
schedules produce the same final result.  This is because in defining 
equivalence, we say nothing about the kinds of computation we will allow to 
occur between the reads and writes. In fact, it is certainly possible to conceive 
of a pair of transactions such that schedules similar to S1 and S4 WILL 
produce different results - for example, if T1 were Deposit  $50.00 (as 
before), and T2 were Credit 10% interest to the balance.   

 

(But both would still be serializable and thus considered consistent, even 
though final results differ.)

F. In order to ensure correctness of concurrent operation, we must ensure that 
the schedule we follow is serializable. 

1. In our initial example with deposit and withdrawal transactions, the two 
schedules that produced correct results (S1 and S4) were both serial 
schedules.  None of the erroneous schedules (S2, S3, S5, or S6) are 
serializable.  (We will prove this shortly.)

2. In our example of two transfers we exhibited a non-serial schedule that 
gives a correct answer.  
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Initial checking balance $2000; initial savings balance $1000 
 

Manual  Transfer Transaction (T1) Automatic Transfer Transaction (T2) 
 

Reads checking balance ($2000) 
Subtracts $100 to give $1900 
Writes checking balance ($1900) 

Reads checking balance ($1900) 
Subtracts 10% ($190) to give $1710 
Writes checking balance ($1710) 

Reads savings balance ($1000) 
Adds $100 to give $1100 
Writes savings balance ($1100) 

Reads savings balance ($1100) 
Adds $190 to give $1290 
Writes savings balance ($1290) 

 

Final sum of balances is $1710 + $1290 = $3000  

 

This schedule is conflict serializable; it is conflict equivalent to: 

 

Manual  Transfer Transaction (T1) Automatic Transfer Transaction (T2) 

 

Reads checking balance ($2000) 
Subtracts $100 to give $1900 
Writes checking balance ($1900) 
Reads savings balance ($1000) 
Adds $100 to give $1100 
Writes savings balance ($1100) 

Reads checking balance ($1900) 
Subtracts 10% ($190) to give $1710 
Writes checking balance ($1710) 
Reads savings balance ($1100) 
Adds $190 to give $1290 
Writes savings balance ($1290) 

 

Final sum of balances is $1710 + $1290 = $3000 - consistent 

 

PROJECT 

 

which is a serial schedule.  (Explain operation movements)
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3. We observe, then, that any serializable schedule will give a consistent 
result, while a non-serializable schedule may not give a consistent result.  
(But note that two serializable schedules could give different results, just 
as two serial schedules can.  However, we will regard either result as 
acceptable since it is consistent.)

V. Testing for Serializability

A. Since any schedule that is serializable produces consistent results, and a non-
serializable schedule may not do so, it is clearly desirable to be  able to test a 
given schedule to see if it is serializable. Unfortunately, this can be 
computationally expensive for the general definition of view serializability.  
If we use the more stringent standard of conflict  serializability, then we can 
test for serializability more easily.  

B. We can test for conflict serializability by constructing a PRECEDENCE 
GRAPH as follows:

1. Let each transaction be a node in the precedence graph.

2. Let there be a directed edge from a transaction T1 to a transaction T2 if 
one or more of the following occur:

a) T1 executes a read on some item before T2 executes a write on it

b) T1 executes a write on some item before T2 executes a read on it

c) T1 executes a write on some item before T2 executes a write on it 

 

Each such edge represents the existence of a pair of conflicting 
operations which cannot be interchanged.  Thus, in any conflict 
equivalent schedule, T1's operation must occur before T2's - which 
means in a conflict equivalent serial schedule ALL of T1 must occur 
before all of T2.
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3. If the resulting graph contains a cycle, then the schedule is not conflict 
serializable.

a) It the graph is acyclic, then any topological sorting of the resultant 
precedence graph will give an equivalent serial schedule.  
 

Example: Consider our example schedule for automatic and manual 
transfers that produced an incorrect final result. 
 

Initial checking balance $2000; initial savings balance $1000 
 

Manual  Transfer Transaction (T1) Automatic Transfer Transaction (T2) 
 

Reads checking balance ($2000) 
Reads checking balance ($2000) 

Subtracts $100 to give $1900 
Writes checking balance ($1900) 

Subtracts 10% ($200) to give $1800 
Writes checking balance ($1800) 
Reads savings balance ($1000) 
Adds $200 to give $1200 
Writes savings balance ($1200) 

Reads savings balance ($1200) 
Adds $100 to give $1300 
Writes savings balance ($1300) 

 

Final sum of balances is $1800 + $1300 = $3100 - inconsistent! 

 

Its precedence graph is: 
 

 
 
PROJECT 

 

The edge from T1 to T2 arises because T1 must do  its read before T2 does 
its write.  The edge from T2 to T1 arises because T2 must do its read before 
T1 does its write. 

T1 T2
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Clearly, this graph contains a cycle, so this schedule is not serializable. 

 

Example: Consider our non-serial, but serializable transfer/withdrawal  
schedule. 
 

Initial checking balance $2000; initial savings balance $1000 
 

Manual  Transfer Transaction (T1) Automatic Transfer Transaction (T2) 
 
Reads checking balance ($2000) 
Subtracts $100 to give $1900 
Writes checking balance ($1900) 

Reads checking balance ($1900) 
Subtracts 10% ($190) to give $1710 
Writes checking balance ($1710) 

Reads savings balance ($1000) 
Adds $100 to give $1100 
Writes savings balance ($1100) 

Reads savings balance ($1100) 
Adds $190 to give $1290 
Writes savings balance ($1290) 

 

Final sum of balances is $1710 + $1290 = $3000  

 

Its precedence graph is: 
 
 
  
 
 
The edge from T1 to T2 arises for two reasons: T1 must do its read before 
T2 does its write, and T2 reads the value written by T1. 

 

PROJECT 

 

Since this graph is acyclic, a topological sort is possible, with T1 done first, 
then T2.  This yields the equivalent serial schedule we noted previously.
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C. Testing for view serializability can also be done by using a precedence graph 
- but in some cases, the process is much more complex.  We will not discuss 
the actual process here.

D. Of course, simply testing for serializability is not enough - we want to ensure 
serializability.  This will be a topic in the next series of lectures - for now, we 
note that there are two general approaches that can be used.

1. We can make use of LOCKS, whereby a transaction is allowed to obtain  
exclusive access to some portion of the database for some period of time.  
Proper use of locking (a topic in the next lectures) can ensure that no 
unserializable schedule can occur.

2. We can make use of a rollback and restart strategy - whereby, when we 
detect that allowing a given transaction to complete would result in an 
unserializable schedule, we rollback an appropriate transaction and restart 
it from scratch.  This, again, is a topic in the next lecture.

VI.Recoverabilty and Cascading Rollback

A. One final issue we must deal with results from the fact that a transaction's 
results are not "official" until the transaction has committed.  In particular, if 
some transaction writes a value that is then read by another transaction, and 
the first transaction fails for any reason before it commits, then any 
transaction that read what it had written before it committed must be rolled 
back and restarted.

B. However, what if the transaction that read the uncommitted value has itself 
committed before the first transaction is rolled back?  We call such a schedule 
an UNRECOVERABLE schedule. 
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Example: 
 
T1 T2 
 
read A 
write A 

read A 
write A 
fully commits 

 
does some further computation, then fails 
 
PROJECT 
 
This schedule could clearly lead to potential inconsistency - e.g. what if T1 
and T2 were each adding 1 to the value of A?  Correct execution of T1 and 
T2 should result in A being increased by 2; but execution of either alone 
should only increase A by 1.  Here, even though T1 failed, A has been 
increased by 2.  Further, if T1 were restarted, A would be increased by 3 even 
though each transaction has only “officially” executed once.

C. We therefore must ensure that any schedule that we produce as the result of 
concurrent execution is not only serializable, but also RECOVERABLE.

1. By this we mean that no transaction can commit until any transaction that 
produced data it uses has itself committed.

2. If a transaction T2 uses data produced by T1, and T1 fails to  commit, 
then T2 must also fail.  (It can be restarted from scratch, but the current 
execution must not be allowed to commit.)

D. Of course, the possibility that the failure of one transaction might force the 
failure of another leads to the possibility of a chain of failures (e.g. T2 reads 
data produced by T1; then T3 reads data produced by T2; then T4 reads data 
produced by T3 ... then T1 fails - T2, T3, T4 etc. must also fail.) 
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1. This phenomenon is known as CASCADING ROLLBACK, and is 
obviously undesirable.

2. We may therefore chose to insist on producing only CASCADELESS 
SCHEDULES, in which cascading rollback cannot occur.  In such a  
schedule, no transaction is allowed to read a value written by another 
transaction until the preceding transaction has fully committed.  (A 
transaction that needs to read a data item that has just been written by 
another transaction must be delayed until the first transaction either fully 
commits or fails - in the latter case,  the previous value of the item is 
read.)

3. Clearly, a cascadeless schedule is also recoverable.

4. Alternately, we may not require recoverability, but at the possible expense 
of cascading rollback (which, in a large database with many different 
items, is unlikely to involve many transactions,

VII.Relaxing Strict Serializability

A. Ensuring strict consistency requires that we only execute serial schedules.  
But doing so may limit the amount of concurrency that is possible in a 
system distributed over multiple processors / disks.  For performance 
reasons, then, systems sometimes settle for something less than strict 
serializability to meet performance goals - even at the risk of possibly 
introducing some inconsistency.

B. The SQL standard defines four levels of isolation between transactions.  One 
of these is the default, but a given transaction may specify a different level 
when it is started.

1. Serializability - the DBMS will ensure that the schedule in which this 
transaction is executed is serializable.  (Actually, as the book notes, some 
implementations may permit a nonserializable execution even then.)
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2. Repeatable read

a) The transaction may only read data written by committed transactions.  
(If it needs to read an item written by a transaction that has not yet 
committed, it must wait until that transaction commits.)

b) If the transaction reads some data item twice, it is guaranteed to see 
the same value both times.  No other transaction may alter the value of 
the item between the reads, even if it writes the item and then commits 
between the two reads.

3. Read committed 

a) The transaction may only read data written by committed transactions.  
(If it needs to read an item written by a transaction that has not yet 
committed, it must wait until that transaction commits.)

b) If the transaction reads some data item twice, it may see different 
values if some other transaction alters the value and then commits 
between the reads.

c) This is generally the default for transactions that don't specify a 
different isolation level.  

4. Read uncommitted - the transaction may read data written by other 
transactions that have not yet committed.  (This may be appropriate for 
summary-type transactions that do not depend on absolute consistency,)
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